

PV solar cells

Maedeh Hajhashemkhani

1402

1

www.theecoexperts.co.uk

1

Solar Cells and their working principle

Photovoltaic Effect:

Different Types of PV solar cells

Silicon PV Cells/Single Junction

Single Junction silicon solar cell

Silicon PV Cells/Single Junction

Advantages

High efficiency

Abundancy of Silicon

Disadvantages

Environmental impact of manufacturing

Disposal/recycling is limited

Safety of Silicon

High Cost

Silicon PV Cells/Second Generation

Lower cost in comparison to first generation

Lower efficiency in comparison to first generation

Silicon PV Cells/Third Generation

Third Generation PV Cells Tandem Solar Cell

Nanostructured Solar Cell

Multi Junction solar Cell

Tandem Solar Cell

Multi Junction Solar Cell

Non-Silicon PV Cells/Liquid Dye-Sensitized

Advantages	Disadvantages
High efficiency	Low stability
	Encapsulation
Low Cost	Solvent Leakage

Non-Silicon PV Cells/Solid-State Dye-Sensitized

Non-Silicon PV Cells/Quantum Dot

Uses quantum dots instead of light absorbing organic dyes

Non-Silicon PV Cells/Quantum Dot

Advantages

High efficiency

Mass and area saving

Low Cost

Disadvantages

Highly toxic and needs stable shell

Increased degradation in aqueous and UV conditions

Altered optical properties of the shell

Non-Silicon PV Cells/Organic Polymer solar cell

Single Layer

Organic polymer solar Cells

Bilayer Heterojunction

Bulk Heterojunction

Bilayer Structure

Bulk Heterojunction

Acceptor-fullerene material Donor-polymer material

Non-Silicon PV Cells/Organic Polymer solar cell

Advantages

lightweight compared to siliconbased devices

The material is flexible and customizable at molecular level

lower potential for negative environmental impact

Disadvantages

Low efficiency compared to siliconbased devices

unstable toward photochemical degradation

The lifetime of plastic photovoltaic currently doesn't come anywhere near that of silicon solar panels

Polymer solar cells also suffer from environmental degradation owing the lack of effective protective coatings

Non-Silicon PV/ Perovskite solar cell

Perovskite solar cell Perovskite-Sensitized solar cell

Thin-Film perovskite solar cell

Non-Silicon PV/ Perovskite solar cell

Advantages

Highly efficient

Low-cost manufacturing process

Suitable for all sorts of solar power production

Disadvantages

This material generates a toxic lead

The material's commercialization has not yet started

It wears away when in contact with light, heat, moisture, and oxygen after some months of use

Non-Silicon PV/ Perovskite solar cell

Difference between Perovskite and Silicon Solar Cells:

Silicon solar cells have existed for years, but perovskite is a new invention.

The efficiency of monocrystalline silicon panels is 19% to 20%. The efficiency of Perovskite panels is approximately 30%

The silicon cells' service life is 25-30 years, whereas, for the other, it is 2.5 years

The light absorption potential of silicon cells is 1100 nm. On the other hand, the perovskite solar cells' absorption potential is 850 nm

The price of the ones is less than the crystalline silicon cell

Challenges ...

www.fool.com